
Developing World Model Data Specifications as Metrics for Sensory
Processing for On-Road Driving Tasks

Anthony Barbera*, John Horst*, Craig Schlenoff*, Evan Wallace*, David Aha#

*National Institute of Standards and Technology

Gaithersburg, MD

#Naval Research Laboratories
Washington, D.C.

ABSTRACT

The building of knowledge-intensive real-time intelligent
control systems is one of the most difficult tasks humans attempt.
It is motivated by the desire to create an artificial reasoning system
that is capable of intelligent behavior, i.e. replicating the ability to
act upon the world and to successfully accomplish activities that
are only possible with the levels of knowledge processing
exhibited by human beings. A critical question to be answered is
how is the success of this effort is to be measured and evaluated.
Measurement of the outward observable system behavior, while
somewhat indicative does not really measure the correctness or
quality of the system’s capabilities. This is especially true in
complex real-time control systems such as autonomous on-road
driving.

This paper describes an on-going effort at NIST, funded by
the Defense Advanced Research Project Agency (DARPA)
Mobile Autonomous Robot Software (MARS) On-Road Driving
Project, to do task analysis and develop performance metrics for
autonomous on-road driving.

This project uses the NIST Real-time Control System (RCS,
now referred to as 4D/RCS) [1] design methodology and reference
architecture to develop a task decomposition representational format
for the on-road driving task knowledge. This task decomposition
representation is used as the framework to further specify the world
model entities, attributes, features, and events required for proper
reasoning about each of the subtask activities. These world model
specifications, in turn, are used as the requirements for the sensory
processing system. These requirements identify those things that
have to be measured in the environment, including their resolutions,
accuracy tolerances, detection timing, and detection distances for
each subtask activity. From these can be developed a set of
performance metrics that allow validation of sensory processing by
evaluating the world model representations it produces for each
individual component subtask activity. In this way, taxonomies of
autonomous capabilities can be developed and tested against these
sensory processing and world model building performance metrics.
Additional metrics can be developed to measure the performance
characteristics of the behavior generation component with its
planning and value judgment operations, but these additional metrics
are not the topic of this paper

KEYWORDS: on-road driving, performance metrics, sensory
processing, task decomposition, finite state machines

1. INTRODUCTION

NIST has been involved with the development of
autonomous intelligent vehicle control systems for a number
of years. These efforts support both off-road and on-road
driving tasks. This work, which has as its goal to approach
human levels of performance in autonomous driving, has
identified significant research and development areas.
There is the behavior generation component that involves
reasoning from real-time world model representations to
carry out strategic and tactical behaviors for both off-road
military missions and on-road civilian driving tasks. This
includes the planning of alternate courses of action as well
as the planning of alternate paths, evaluation of these plans
and selection of the most appropriate action through some
type of value judgment. Much work is presently expended
in this area of reasoning, planning, and decision-making.
Presently, however, the more significant impediment and
therefore the area requiring major work is in the area of
sensors and sensory processing algorithms to generate
accurate, registered world maps and the recognition and
classification of entities at sufficient resolution to populate a
world model representation from which the behavior
generation can work.

Complex real-time control systems are characterized
by the major components of sensory processing to measure
entities and events of interest in the environment; internal
world model processing that derives world representations
from sensory processing and task context internal states;
and the behavior generation processing that reasons from
this world model, develops alternate plans, and makes value
judgments to decide on the next appropriate output action to
accomplish the goal tasks (Figure 1). What is needed are
performance metrics at the level of these internal processing
components that can be used to judge their quality and
correctness.

On the sensory processing side of the world model
there is the sensor fusion, feature and attribute detection,

S E N S O R Y
P R O C E S S I N G

W O R L D M O D E L I N G
V A L U E J U D G M E N T

K N O W L E D G E

I m a g e s

M a p s E n tit ie s

S e n s o r s A c tu a to r sW o r ld

C la s s if ic a t io n
E s tim a tio n
C o m p u ta tio n
G r o u p in g
W in d o w in g

M is s io n (G o a l)

in te rn a l
e x te rn a l

E v e n ts
P la n n e r s
E x e c u to r s

T a s k
K n o w le d g e

B E H A V I O R
G E N E R A T IO N

Figure 1. The basic internal structure of a 4D/RCS control loop. Sensory processing performs the functions of
windowing, grouping, computation, estimation, and classification on input from sensors. World modeling maintains
knowledge in the form of images, maps, entities, and events with states, attributes, and values. Relationships between
images, maps, entities, and events are defined by pointers. These relationships include class membership, ontologies,
situations, and inheritance. Value judgment provides criteria for decision making. Behavior generation is responsible for
planning and execution of behaviors.

object classification, map building etc. – all in the context of
the present task activities. On the behavior side of the
world model there is the planning and value judgment along
with the plan selection and execution.

It is in support of the development of this sensory
processing to world model data specification that the
present work is addressed. The sensory processing
requirements of different driving tasks have significantly
different resolutions, identification, and classification
requirements which suggests that performance metrics
should be defined on a task-by-task basis. As an example,
for the task of the vehicle driving down a highway, the
sensor system has to be able to identify large objects
moving nearby, their direction, speed and acceleration, their
positions in the lanes (which means the sensory processing
system has to be able to identify the lanes on the road) and
state of brake and turn signal indicator lights on these
objects. There is little requirement for detailed recognition
of the type of objects or the need to see them at a distance or
to read signs along side or overhead of the road.

If, however, our autonomous vehicle wants to pass a
vehicle on an undivided two lane road, then an
extraordinarily detailed representation of the world has to be
sensed that identifies additional entities such as upcoming
intersections, rail road crossings, vehicles in the oncoming
lane out to very large distances, lane marking types,
roadside signs etc. This level of sensor capability and
sensor data to world model processing probably does not
exist today.

Thus, we see that the sensor requirements and
sensory-world model processing performance metrics are
highly dependent on the particular driving task that we are

trying to accomplish and should therefore be specified
according to the list of different driving tasks. It is the goal
of this work to first develop this list of driving tasks, and
then to identify the detailed world model entities, features,
attributes, resolutions, recognition distances, minimum data
update times, and timing for task stability for each of these
decomposed subtask activities. This will be the set of
specifications that allow us to determine if particular sensor
systems and particular sensor processing algorithms are
sufficient to support particular driving tasks. Conversely, if
the goal is to be able to accomplish a particular set of
driving tasks, this specification can be used to select the
appropriate sensors and specify the sensor processing
requirements needed to support this particular set of driving
tasks.

If we define in great detail the features, attributes,
and classifications of entities required in the world model in
order to reason about and generate specific driving tasks, we
will have a specification that can be used to not only
identify the requirements to the sensory processing
researchers but can also be used as testing performance
metrics to evaluate the capabilities of various sensors and
sensory processing algorithms.

2. TASK DECOMPOSITION KNOWLEDGE

One of the NIST efforts of the DARPA MARS project is to
provide a task analysis for autonomous on-road driving
which can, among other things, serve as the basis for
development of a number of performance metrics. This task
analysis is based

Figure 2. Example of a task decomposition hierarchical representation of the on-road driving task.

Figure 3. The RCS implementation creates a hierarchical organization of agent control modules (right side of figure) that will be
the execution engine for the task decomposition (left side of figure). There is an agent control module assigned to each actuator
system to be controlled and an organizational structure built up that mimics the same number of layers in the task decomposition
representation. Each corresponding agent control module will accept the appropriate subtask command at the equivalent level in
the task hierarchy and will determine the next subgoal command to its subordinate based on the rules encoded in the
corresponding state table. For example, the subgoal command of PassVehInFront to the Driving Behaviors agent control module
will select the state table that contains all of the rules necessary to evaluate the present world state at this level of abstraction and

in the context of passing the vehicle in front and send the appropriate subgoal command (either a FollowLane, or a
ChangeToRightLane, or a ChangeToLeftLane) for this present state to the Elemental Maneuvers agent control module.

Figure 4. Every agent control module in the RCS hierarchy has the same processing structure of the generic agent control module. A
module receives a commanded task (goal) that represents the present activity to be done at this level in the hierarchy at this instant. The
Behavior Generation (BG) function uses this commanded task to look up and retrieve the state-table that contains the rules relevant to this
activity. This sets the context for all of the processing at this module. Sensory Processing (SP) is filling in world model data from the
environment that is important to this particular task. If the situation requires planning activity, then the Value Judgment (VJ) function
projects possible courses of action and performs some cost based analysis to come up with a plan. As the situation creates matches to the
rules in the BG’s state-table, the corresponding action part of the rule generates the next subgoal command to the subordinate agent control
module.

upon work performed by the Department of Transportation
in the 1970s [3].

Work at NIST over the last 25 years has led to the
development of the Real-time Control System (RCS) [1],
now referred to as 4D/RCS) methodology and reference
architecture as the formal approach to the design and
implementation of these complex, intelligent, real-time
control systems.

The 4D/RCS methodology uses a hierarchical task
decomposition representational format [2] to hang the
domain knowledge on. Hierarchies are the architectural
mechanisms used to “chunk” and abstract systems into
manageable layers of complexity. The scenario descriptions
of intelligent control system activities naturally evolve into
a task decomposition representation since the scenarios
aretask sequences and can easily be discussed at many
levels of abstraction leading to well-defined levels within
the task hierarchy. This provides a convenient framework
for system designers/knowledge recorders to organize the
information from the expert within an architecture that

preserves the narrative character of the expert’s scenarios
allowing the expert to easily review this representational
format. Thus, a hierarchical task decomposition
representational format is clearly well suited for this.
Figure 2 illustrates the process of going from expert
knowledge to a task decomposition hierarchy for the on-
road driving task.

This task decomposition hierarchy also acts as a
convenient structure on which to place the semantic
knowledge from the expert. In the on-road driving task,
semantic knowledge are such knowledge items as the rules
of the road, the rules that require the vehicle to drive more
slowly on wet or icy roads, or to allow larger following
distances on wet roads, etc. Since each layer in the task
decomposition represents a different level of the abstraction
of the tasks, each layer also delineates levels of detailed task
context for the incorporation of semantic knowledge
relevant to that level of detail within a particular task’s
activities.

We will take advantage of this very organized
layering of the task knowledge into different levels of
abstraction and task responsibility to aid us in doing a
detailed analysis of the knowledge associated with finely
partitioned task activities for the on-road driving activities.

Since the 4D/RCS methodology used a task
decomposition decision hierarchy as the mechanism to
capture the knowledge from the expert’s narratives, it is
straightforward to instantiate this into an implementation of
a hierarchical architecture of agent control modules
executing this task decomposition in a one-to-one fashion

Figure 5. The task to “Pass a vehicle on a two lane road” is shown in both the task tree representation and the state table
representation. The task knowledge for this particular on-road driving task is the set of subgoals, their sequence, and the
conditions (present world situations) that cause each of these subgoals to be commanded. Here the sequence of subgoals is to
“FollowLane”, “ChangeToLeftLane”, “FollowLane”, “ChangeToRightLane”, and “FollowLane”. These are listed in the output action
side (right side) of the state table. The conditions that trigger these output actions are present world situations such as
“ConditionsGoodToPass”, “InPassingLane, and “ClearOfPassedVehicle”, etc and are listed in the input condition side (left side) of
the state table.

(Figure 3). This 4D/RCS implementation technique
represents the knowledge in the implemented system in a
manner that continues to be easily recognized by the domain
expert.

It maintains the layered partitioning of the task to
create levels of abstraction, task responsibility, execution
authority, and knowledge representation in a manner so as
to greatly enhance the designer’s ability to think about each
of these layers separately. Each layer totally encapsulates
the problem domain at one level of abstraction so all aspects
of the task at this one layer can be analyzed without
overwhelming the designer. All of the system’s interactions
and co-ordinations within the context of this layer of
abstraction are contained here so that modifications and
enhancements to this layer can be evaluated with respect to
their completeness and potential interaction with other task
activities at that same level of abstraction. At each layer, all
of the relevant sensory processing, world modeling, and
behavior generation processing for that level of
responsibility and authority is encapsulated.

As such, the 4D/RCS approach provides a very well
ordered representation of the tasks at various levels of finer
and finer detail, clustered at each level in a task sensitive
context. This is ideal for the manner in which we want to
identify the performance metrics.

A generic agent control module (Figure 4) is used as
the unit building block in our hierarchical implementation
system. Finite State Machines (FSMs) cluster and order the
task decomposition knowledge rules specific to a particular
task goal for an agent control module. Part of the
implementation procedure is to determine which rules apply
to each particular subtask activity at each level in the
hierarchy. This is a natural outcome of the task
decomposition process.

A task is decomposed at one level into a sequence of
simpler subtask actions to command the next subordinate
level. The representation of this sequence can be in the form
of a FSM that can be implemented as a state table, which is
the ordered representation of the rules used to encode those
sets of conditions that will result in the correct sequencing
through the appropriate next output actions to accomplish that
particular task.

These state tables are also an extremely convenient
representational format for the developer. The state tables
capture the relevant task sequencing and state knowledge at
each control module for every task activity. As the need
arises to evolve the system, the state table that contains the
knowledge rule set that concerns the activity to be modified
is easily identified and retrieved. Potential conflicts that
might arise in the execution are easily seen by inspection

(since this is such a small set of rules) and avoided by the
ordering of the rules that is done by the use of additional
state variables. In this manner, the expert can provide
additional task knowledge to the resolution of the potential
conflict in specific task activities rather than the system
designer devising some arbitrary conflict resolution
mechanism to be applied generally. An example of the

mapping of the task decomposition knowledge into a state
table is shown in Figure 5.

3. WORLD MODEL KNOWLEDGE

The FSMs described above are used to encode the task
decomposition knowledge. Each line of each state table

Figure 6. The “PassVehOnTwoLaneRoad” Plan StateTable encodes the task decomposition representation of all of the input
conditions and corresponding output action subgoals. In this example, the next subgoal “ChangeToLeftLane” is chosen as the
output action when the input condition of “ConditionsGoodToPass” is recognized. This figure illustrates how all of the
dependencies on the world model data are derived. The high level group of situations that must be true for
“ConditionsGoodToPass” to be true are identified. Here, one of these (LegalToPass) is further refined to identify all of the world
model states that make up this situation. One of these world model states (NoRailroadXInPassZone) is then examined to
determine all of the world entities, attributes, features, dimensions, and resolutions that go into the decision that this state is true.
One of these entities (CrossBuck sign) is detailed as to the features, dimensions, and sensor resolutions required to recognize this
entity within the distances required for the passing vehicle task.

uses some symbolic value to describe the present situation
that must be matched in order to execute the corresponding
output action of that rule. The processing required to
evaluate that this particular situation is true can be thought
of as a knowledge tree lying on its side, funneling left to
right, from the detailed sensory processing branching until
all of the values have been reduced to the one appropriate
situation identification encoded in a symbolic value such as
“ConditionsAreGoodToPass” (see Figure 6). This lateral
tree represents the layers of refinement processing made on
the present set of world model data to come to the
conclusion that a particular situation now exists such as
“ConditionsAreGoodToPass”.

The identification of these layers of knowledge
processing to evaluate to the situation value is done in
reverse. We know that we cannot change into the oncoming
traffic lane (the “ChangeToLeftLane” action) during the
passing operation until “ConditionsAreGoodToPass”. Now

we have to determine what are all of the things that have to
be taken into consideration in order for this to be true. To
determine this, many different example scenarios are
reviewed to determine all of the pieces of knowledge
required for all of these variations. The results are grouped
by category into (in this example) five major evaluation
areas. Thus, to be able to say that the
“ConditionsAreGoodToPass”, we first had to evaluate that
each of the five sub groups were true, namely, the five
situations of “LegalToPass”, “EnvironmentSafeToPass”,
“SituationInFrontOKtoPass”, “SituationInBackOKtoPass”,
and “OncomingTrafficOKtoPass”, all had to be true.

In this example, we have clustered all of the rules of
the road that pertain to the passing operation at this level of
task detail into the “LegalToPass” sub group evaluation.
We have itemized nine world states to be evaluated and we
have named them with the identifiers such as
“NoConstructionInPassZone”,

“NoTransitOrSchoolBusStopping”, “NoPassZone-
NotInEffect”, “LaneMarkingsAllowPass”,
“NoIntersectionsInPassZone”, “NoRailroadXInPassZone”,
etc.

These world states can now be further broken into the
primitive world model elements we need to be able to
measure (such as vehicles, their speed, direction, location,
lane markings, signs, railroad tracks, etc.) in order to
determine that these world states exist. These primitive
world model elements then set the requirements for the
sensory processing system we need to build to support these
control tasks. Everything has been determined in the
context of individual tasks we want the system to be able to
do.

4. APPLICATION EXAMPLE

In this section, we summarize the RCS methodology, and
elaborate on an example mentioned throughout the paper
pertaining to passing another vehicle on a two-lane
undivided road. Domain experts are consulted and play an
integral part throughout this entire process. In the case of
on-road driving, we are all domain experts, though many of
the conditions we look for and the actions we take are
determined subconsciously.

1) Scenario development with a domain expert - For

any task in on-road driving, we walk through detailed
scenarios with domain experts to deeply understand the
actions they take in certain situations, what conditions
spawned those actions, and why they felt the actions
were most appropriate in that situation. If possible, we
try to immerse the domain expert in similar situations
and have them talk through their behaviors. In the case
of passing on a two-lane undivided road, it is often
beneficial to drive in a vehicle with the domain expert
and to have them speak through their process of
determining when it was appropriate to pass. These
specific conditions that spawn behaviors often change
slightly depending on the personality and aggressively
of the driver, but we try to generalize the behavior to its
fundamental components when encoding it in the
control system.

2) Develop the task decomposition hierarchy - Before
we can encode the knowledge needed to pass on a two-
lane undivided road, we must understand and build an
initial, overall task decomposition hierarchy for on-road
driving. This is an iterative process, and the task
decomposition hierarchy often changes as new on-road
driving scenarios are explored. Changes in the task
decomposition hierarchy are much more frequent in the
beginning, and gradually slow down as more and more
scenarios are explored. The passing scenario is one of
many scenarios that is used to develop this task
decomposition hierarchy.

3) Determine the conditions that cause you to perform
an action and the sub-actions that are needed to
perform that action - In the case of passing, the
actions that need to be performed are fairly
straightforward; namely, change to left lane, follow left
lane for some period of time, and change to right lane.
This is shown in Figure 5. However, the conditions of
when you start this sequence of actions and when you
progress from one action to the next is much more
difficult to understand.
Let’s look at the conditions when one would initiate a
passing operation. In speaking with domain experts,
one could break down these conditions that must be
true to pass into two categories: namely, that our
vehicle desires to pass and that the conditions are good
to pass. Only when both of these conditions are true do
we initiate the passing operation. Through continued
interrogation and “what-if” scenarios, we determine
five conditions that dictate that conditions are good to
pass. So the next logical question to the domain expert
would be “When are the conditions good to pass?”
Through a series of continued interrogations and “what-
if” scenarios, one finds that five sub-conditions must be
true for conditions to be good to pass: 1) it is legal to
pass, 2) the environmental weather and visibility
conditions are conducive to passing (often related to
weather conditions), 3) the situation in front of our
vehicle is OK to pass (other vehicles, pedestrians, and
objects in front of us do not hinder our ability to pass),
4) the situation in back of our vehicle is OK to pass
(the vehicle behind us is not passing or tailgating us),
and 5) oncoming traffic allows us to pass safely (we
have time to get around the vehicle in front of us). Each
of these five sub-conditions would continue to be
broken further down into sub-conditions until we get to
the point where we have identified the objects in the
environment, and their pertinent attributes, that we are
concerned with to perform this passing action.

4) Use the previous step to define the concepts that
must be captured in the system’s underlying
knowledge base, and structure the knowledge base
to ensure maximum efficiency for the application -
The objects and attributes discovered in the previous
step sets the requirements for the knowledge base that
underlies the system. Following through with the
scenario of passing on a two-lane undivided road, in
order to evaluate the conditions mentioned in the
previous step, the knowledge base must contain
concepts such as:
• other vehicles, including their speed, direction,

location, and possibly intention;
• pedestrians, including the speed, direction,

location, and possibly intention;
• lane markings, along with the type of lane

marking;
• weather conditions and visibility;

• signs, including the text on the sign.

Once these concepts are captured in the knowledge
base, they can be structured in such a way to ensure
maximum efficiency of the system.

5) Carefully evaluate all of the above objects and
attributes in the context of the appropriate tasks to
define resolutions, distances, and timing of the
measurement of these items by the sensory
processing system. - As shown in Figure 6 above with
the identification of the railroad crossing buck sign,
define the sizes, shapes, relative locations, and angles to
the road, distances at which they have to be identified
(thereby setting resolution requirements) etc. This will
be the specifications for the sensory processing in terms
of the world model elements it must be able to measure
and generate. These same specifications become the
performance requirements on the sensory processing
during test and evaluation.

5. EXAMPLE OF SENSORY PROCESSING
METRICS

In this section, we will look at some detailed examples of
requirements for sensory processing, following through with
our passing example. In particular, we will look at what it
required of the sensors on the vehicle to determine, at any
given time and speed, if it is legal to pass.

As shown in Figure 6, in order for a passing operation
to be legal, there cannot be:

• any construction in the passing zone,
• a transit or school bus stopping in the passing

zone,
• a no-passing-zone sign in the passing zone,
• lane marking that prohibit passing
• intersections in the passing zone
• railroad crossing in the passing zone
• a bridge in the passing zone
• a tunnel in the passing zone
• a toll booth in the passing zone

Therefore, the sensory processing system must detect

these items, or indicators that these items are approaching,
at a distance that allows the vehicle to pass safely. In this
analysis we make a few assumptions:

• the vehicle can accelerate comfortably at 1.65 m/s2
• our vehicle is positioned approximately one

second behind the vehicle in front of it (i.e., our
vehicle will be at the preceding vehicle current
position in one second traveling at constant
velocity)

• our vehicle will begin merging back into tits
original lane when it is one car length in front of
the vehicle it is passing

• the merging operation which brings the vehicle
back into our vehicle’s original lane will take one
second

• the average length of a vehicle is 5 meters.

All of these values are variables, and can easily be
changed depending on the exact situation.

With these assumptions, we explored what distance
our vehicle would travel during a passing operation, how
long it would take to travel that distance, and what the final
velocity of the vehicle would be assuming initial speeds of
13.4 m/s (30 mph), 17.9 m/s (40 mph), and 26.8 m/s (60
mph). Table 1 shows the results.

Speed
(m/s)

Time to
Complete
Pass (s)

Distance
Traveled
in Pass
(m)

Final Velocity at
End of Pass (m/s)

13.4 6.32 117.8 23.9
17.9 6.81 159.3 29.1
26.8 7.68 253.9 39.5
Table 1: Pertinent Values for Passing Operation at

Various Speeds

Note that in this analysis, we are assuming un-
occluded visibility.

If we look at the “ no railroad crossing in passing
zone” requirement, we note that there are multiple markings
that can indicate a railroad crossing is upcoming, such as a
crossbuck just before the railroad crossing, or railroad signs
at pre-defined distances before the railroad crossing. Table 2
shows the specification on how far before a railroad
crossing a warning signs should be placed, what size the
sign must be, and what size the letter on the signs must be,
according to the Manual of Uniform Traffic Control
Devices (MUTCD) [4].

Speed
(m/s)

Distance from
Railroad
Crossing (m)

Sign
Dimensions (m
x m)

Letter
height
(m)

13.4 99 0.450 x 0.450 0.125
17.9 145 0.450 x 0.450 0.125
26.8 236 0.450 x 0.450 0.125

Table 2: Specifications for Railroad Crossing Signs

Considering that the railroad warning sign is a pre-
defined distance before the railroad crossing, we can
subtract that distance from the full passing distance shown
in Table 1 to identify the forward distance our sensors need
to be able to see. These distances are shown in Table 3.

Speed
(m/s)

Passing
Distance
(m)

Warning Sign
Distance (m)

Sensor Sign
Distance
(m)

13.4 117.8 99 18.8
17.9 159.3 145 14.3
26.8 253.9 236 17.9

Table 3: Sight Distance for Railroad Warning Sign

This sets the specification for how far a sensor
must be able to “see” to determine if there is a railroad
crossing sign in the passing zone. However, we can take this
one step further and determine what the resolution of the
sensors must be to read the sign. The following couple of
paragraphs look at the requirements of the sensor itself. We
ignore the software that performs the character and object
recognition in this discussion, though we recognize that it is
at least as important as the specifications for the sensors.

If we assume that the sign needs to be read (e.g.,
we do not know what the sign indicates based on its shape
and/or color), and that for each letter in the sign, we need a
20x20 array of pixels hits on that letter to be able to
recognize the letter, assuming the set of letters can be
described in a 10x10 dot matrix and we double this to
approximate the Nyquist criteria. Using simple trigonometry
based upon the distance to the sign and the size of the letters
on the size as shown in Table 2, we can show that we need a
camera that has resolutions of about 0.02 degrees for all
three cases above.

In some cases, a warning sign is not present and
the sensors must rely on recognizing a crossbuck that is
immediately before the railroad crossing. In this case, we
assume that we need an array of 5 x 5 pixel hits on the
crossbuck to recognize it by shape, and that the size of the
crossbuck is the standard 900 x 900 mm total dimensions, as
specified by the MUTCD manual. Based on this
information, we would need a sensor with a resolution as
shown in Table 4 below.

Speed
(m/s)

Sensor
Resolution
(degrees)

13.4 0.1042
17.9 0.0711
26.8 0.0406

Table 4: Sensor Sight Distance for Crossbuck

Similar calculations could be performed for all
other items the sensor would need to sense when
determining if it is legal to pass at any given time and speed.

6. SUMMARY

The goal of this work is to produce both a taxonomy of on-
road driving behaviors and the set of specifications that
identify the world model entities, features, attributes,
resolutions, recognition distances, and locations for each
separate driving task which can be used for the basis of
performance metrics for sensory processing world model

building. This requires the representation of two sets of
domain knowledge. One is the task decomposition
knowledge that defines the sequences of subtask activities
for every aspect of every type of driving task. This task
decomposition knowledge is encoded into ordered sets of
production rules clustered by the context of the individual
driving tasks. These rules consist of input conditions
(present world situations) that when matched cause the
output of the appropriate sub task goals. The second set of
domain knowledge is the detailed world state descriptions
and evaluation functions required to produce the world
situation symbolic values that are used as the input
conditions by the task decomposition rules.

We described how the 4D/RCS methodology and
reference architecture was used to define the task
decomposition and the resulting state tables of production
rules. Then we described how the input conditions of these
rules were further evaluated to derive all of their
dependencies on all of the corresponding world model states
and primitive world entities, features, and attributes. Still
using the context of the individual driving tasks, the
appropriate recognition distances were factored in to reach a
specification of the requirements for the sensory and world
model processing necessary for each separate driving task
behavior. These requirements now serve as both a
requirements list for the development of the sensory and
world model processing for different on-road driving tasks
as well as the performance metrics against which they can
be measured as to the correctness of their operations.

References
 1. Albus, J. and et.al., "4D/RCS Version 2.0: A

Reference Model Architecture for
Unmanned Vehicle Systems," NISTIR 6910,
National Institute of Standards and
Technology, Gaithersburg, MD, 2002.

 2. Albus, J. and Meystel, A., Engineering of
Mind, John Wiley & Sons, Inc. 2001.

 3. McKnight, J. and Adams, B., Driver
Education Task Analysis. Volume 1. Task
Descriptions, Human Resource Research
Organization, Department of Transportation,
National Highway Safety Bureau 1970.

 4. U.S.Department of Transportation, F. H. A.,
Manual on Uniform Trarffic Control
Devices (MUTCD 2000) Millenium Edition
2000.

